Periodic waves for the cubic-quintic nonlinear Schrodinger equation: Existence and orbital stability
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we prove existence and orbital stability results of periodic standing waves for the cubic-quintic nonlinear Schrödinger equation. We use implicit function theorem to construct a smooth curve explicit with <i>dnoidal</i> profile such construction can be used that associated period map is strictly increasing in terms energy levels. The monotonicity also useful obtain behaviour non-positive spectrum linearized operator around wave. Concerning stability, dnoidal are orbitally stable space restricted even functions.</p>
منابع مشابه
Existence, stability, and scattering of bright vortices in the cubic-quintic nonlinear Schrödinger equation
We revisit the topic of the existence and azimuthal modulational stability of solitary vortices (alias vortex solitons) in the twodimensional (2D) cubic–quintic nonlinear Schrödinger equation. We develop a semi-analytical approach, assuming that the vortex soliton is relatively narrow, which allows one to effectively split the full 2D equation into radial and azimuthal 1D equations. A variation...
متن کاملOn existence of dark solitons in cubic-quintic nonlinear Schrödinger equation with a periodic potential
A proof of existence of stationary dark soliton solutions of the cubic-quintic nonlinear Schrödinger equation with a periodic potential is given. It is based on the interpretation of the dark soliton as a heteroclinic on the Poincaré map.
متن کاملOrbital stability of periodic waves for the nonlinearSchrödinger equation
The nonlinear Schrödinger equation has several families of quasi-periodic travelling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the...
متن کاملOrbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves
Periodic waves of the one-dimensional cubic defocusing NLS equation are considered. Using tools from integrability theory, these waves have been shown in [4] to be linearly stable and the Floquet–Bloch spectrum of the linearized operator has been explicitly computed. We combine here the first four conserved quantities of the NLS equation to give a direct proof that cnoidal periodic waves are or...
متن کاملOn instability for the cubic nonlinear Schrodinger equation
We study the flow map associated to the cubic Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in Hs, where 0 < s < sc, sc the critical index, and perturbations in Hσ , where σ < sc is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2023
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2022101